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Variations in regional brain volumes are heritable measures of 
brain functional and structural changes. Volumetric varia-
tions of the human brain are known to be phenotypically and 

genetically associated with heritable cognitive and mental health 
traits1–5, and research is underway to understand the shared genetic 
influences on these traits6. Individual variations in the human 
brain volume are usually quantified by magnetic resonance imag-
ing (MRI). In region of interest (ROI)-based analysis, whole-brain 
MRIs are processed and annotated onto many pre-defined ROIs, 
and then regional volumetric phenotypes are generated to measure 
the structure of brain ROIs. Both twin and population-based stud-
ies have shown that these volumetric phenotypes can be highly or 
moderately heritable. The heritability of brain regions estimated 
from twin studies can be larger than 80%7–12. For example, the heri-
tability of basal ganglia structures (putamen, caudate and pallidum) 
and limbic and diencephalic regions (hippocampus, amygdala and 
thalamus) was reported to range from 0.60 to 0.85 (ref. 11). Common 
genetic variants (typically SNPs) can account for more than 50% 
of the phenotypic variation in the general population13–17. The SNP 
heritability18 estimates of the accumbens area, amygdala, putamen, 
palladium, caudate, thalamus and hippocampus range from 0.40 
to 0.54 (ref. 15). A highly polygenic or omnigenic19,20 genetic archi-
tecture has been observed, which indicates that a large number of 
genetic variants influence regional brain volumes and their genetic 
contributions are widespread across the genome.

Several GWAS3,14,17,21–25 have been conducted to identify genetic 
risk variants for brain volumetric phenotypes. However, except for 
the whole-brain volume and volumes of a few specific ROIs (for 
example, hippocampus in subcortical area3,17,26), GWAS of most 
brain volumetric phenotypes were insufficiently powered, for which 
the largest sample size of discovery GWAS was less than 10,000 in 
Elliott et al.14. Such GWAS sample size is much smaller than those 
of recent GWAS of other heritable brain-related traits, such as cog-
nitive function27, neuroticism28 and intelligence29, where sample 
sizes ranged from 269,867 to 449,484. Given the polygenic nature 
of brain volumes, most of the genetic risk variants may remain 
undetected, and GWAS with a larger sample size can uncover more 
associated variants and enrich the pleiotropy and genetic co-archi-
tecture with other traits. Recently, the UK Biobank (UKB30) study 
team has collected and released MRI data for more than 20,000 
participants. In addition, publicly available imaging genetic data-
sets also emerge from several other independent studies, includ-
ing the Philadelphia Neurodevelopmental Cohort (PNC31), the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI32), Pediatric 
Imaging, Neurocognition, and Genetics (PING33) and the Human 
Connectome Project (HCP34), among others. These datasets pro-
vide a new opportunity to perform better-powered GWAS of all 
ROI brain volumes.

Here we downloaded the raw MRI data from these data resources 
and processed the data using consistent standard procedures  
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via advanced normalization tools35,36 to generate 101 regional (and 
total) brain volume phenotypes (referred to as ROI volumes), 
including total brain volume (TBV), gray matter, white matter and 
cerebrospinal fluid. We used 19,629 UKB individuals of British 
ancestry in the main discovery GWAS. Four other datasets with 
relatively small sample sizes (total sample size 2,192 after quality 
controls) were used to validate the UKB findings, and finally, a 
meta-analysis was performed to combine all of the data. We started 
our analysis of UKB data by estimating SNP heritability, which is 
the proportion of phenotypic variation that can be explained by 
the additive effects of all common autosomal variants37. Since the 
UKB MRI data were released at different time points, we organized 
them into two parts: the first part was released in 2017 (which we 
refer to as phase 1, n = 9,198), most of which has been analyzed 
in Elliott et al.14, and the second part was released in 2018 (which 
we refer to as phase 2, n = 10,431). To detect any potential het-
erogeneity between the two phases, we compared the SNP heri-
tability estimated in phase 2 data to that in phase 1 data. We then 
carried out GWAS to identify the associated genetic variants for 
each ROI volume. We performed gene-based association analysis 
via MAGMA38 to uncover gene-level associations, and performed 
post-GWAS functional mapping and annotation (FUMA39) to 
explore the functional consequences of the significant genetic 
variants. We calculated the pairwise genetic correlation between 
ROI volumes and 50 brain-related complex traits by the linkage 
disequilibrium (LD) score regression (LDSC40). To confirm the 
robustness of UKB GWAS findings, we jointly analyzed the UKB 
GWAS results with those from PNC, ADNI, PING and HCP. We 
developed genome-wide polygenic risk scores (PRS) to assess the 
predictive ability of the UKB GWAS results on the four other data-
sets. GWAS summary statistics of the UKB sample and meta-anal-
ysis for the five studies have been made publicly available at https://
github.com/BIG-S2/GWAS.

results
SNP heritability estimates of the two UKB phases. In Supplementary 
Fig. 1, we compare the SNP heritability (h2) estimated separately 
from UKB phase 1 and 2 data. The sample correlation coefficient of 
these estimates was 0.85 (correlation = 0.85), indicating a moderate 
to high level of agreement in terms of the degree of genetic contribu-
tions to ROI between the two phases. The mean h2 across 101 ROI 
volumes was 0.41 for phase 1 and 0.37 for phase 2. The difference 
of mean h2 was not significant (two-sided t-test, P = 0.12). Ten ROIs 
had >0.6 h2 estimates in both phases, including TBV, cerebellar ver-
mal lobules VIII–X, cerebellar vermal lobules I–V, brain stem, left/
right cerebellum exterior, left/right cerebellum white matter and 
left/right putamen. The h2 estimates from the combined data were 
highly correlated with those from phase 1 (correlation = 0.93) and 
phase 2 (correlation = 0.95) (Supplementary Figs. 2 and 3). The h2 
and the corresponding 95% confidence interval (CI) are illustrated 
in Supplementary Figs. 4–6. The h2 estimates, standard errors, and 
raw and Bonferroni-corrected P values from the one-sided likeli-
hood ratio tests are provided in Supplementary Table 1. In the 
combined data, h2 of most ROIs was significant after Bonferroni 
correction for multiple testing (mean h2 = 0.40, h2 range = (0.12, 
0.72), standard error = 0.15). SNP heritability estimates of left basal 
forebrain (h2 = 0.10) and optic chiasm (h2 = 0.06) were not signifi-
cant. These h2 estimates were comparable with previous results14,15. 
In addition, for each ROI, we examined the genetic correlation of 
its regional volumes collected in the two phases. Genetic correla-
tion estimates and the associated 95% CIs show a high degree of 
between-phase genetic similarity for most ROIs (Supplementary 
Table 1 and Supplementary Fig. 7). In summary, SNP heritability 
and genetic correlation analyses indicate that most ROI volumes 
are heritable and have a largely consistent genetic basis in the two 
phases’ data.

Significant GWAS associations of 101 ROI volumes. We carried 
out GWAS of the 101 ROI volumes using 8,944,375 genetic variants 
after genotyping quality controls. Manhattan and quantile–quantile 
plots of all 101 phenotypes are displayed in Supplementary Datasets 1  
and 2, respectively. In the rest of this paper, we use 4.9 × 10−10 (that 
is, 5 × 10−8/101, additionally adjusted for all 101 GWAS performed) 
as the significance threshold for genetic variant-level associations 
unless otherwise stated.

We found that 365 independent significant variants had 494 sig-
nificant associations with 58 ROIs (Supplementary Tables 2 and 3) 
at the 4.9 × 10−10 significance level. Independent significant variants 
were defined as significant variants that were independent of other 
significant variants by FUMA (Methods). The number of associa-
tions for each ROI is displayed in Fig. 1 and Supplementary Table 2.  
Left/right hippocampus, left/right putamen and cerebellar vermal 
lobules VIII–X had at least 30 independent significant variants. The 
number of independent significant associations on each chromo-
some is shown in Supplementary Table 4. Chromosome 12 had 
the largest number of independent variant-level associations after 
weighting by chromosome length (Supplementary Fig. 8).

Based on the pre-calculated LD structure from the 1000 Genomes 
reference panel41, variants in LD with independent significant vari-
ants were identified and then (independent) lead variants and 
genetic risk loci were defined (Methods). The 494 independent sig-
nificant variant-level associations were further characterized as 170 
significant associations between genetic risk loci and ROI volumes 
(Supplementary Table 5). Brain stem, X4th ventricle, cerebellar 
vermal lobules VIII–X, cerebellar vermal lobules VI–VII, left/right 
putamen, left/right cerebellum exterior, left/right hippocampus, 
left/right lateral ventricle, left pallidum, TBV and white matter had 
at least five associated loci (Supplementary Table 2). Each chromo-
some had at least one associated locus except for chromosomes 13, 
21 and 22 (Supplementary Table 6). Results at significance thresh-
olds 5 × 10−8 and 5 × 10−9 are also provided in the above tables and 
summarized in Supplementary Table 7. We also performed asso-
ciation analysis for 283,120 genetic variants on the X chromosome 
(Methods) but observed no significant association at the 4.9 × 10−10 
significance level.

Concordance with previous GWAS results. We performed associ-
ation lookups for the 365 independent significant variants and their 
correlated variants in the NHGRI-EBI GWAS catalog42. We found 
that 166 independent significant variants (associated with 47 ROI 
volumes) have previously reported GWAS associations with other 
traits (Supplementary Table 8). Our results tagged many variants 
that were previously reported in GWAS of ROI volumes, including 
19 variants in van der Meer et al.3 for hippocampal subfield volumes, 
12 in Hibar et al.17 for subcortical brain region volumes, 6 in Chen 
et al.43 for putamen volume, 4 in Bis et al.25 for hippocampal volume, 
2 in Hibar et al.21 for hippocampal volume, 2 in Stein et al.44 for brain 
structure, 2 in Ikram et  al.24 for intracranial volume, 1 in Furney 
et al.45 for whole-brain volume and 1 in Baranzini et al.46 for normal-
ized brain volume (Supplementary Table 9). For the other traits, we 
highlighted previous associations of 46 variants with mental health 
disorders (such as schizophrenia, autism spectrum disorder and 
depression), 98 with cognitive functions, 25 with educational attain-
ment, 24 with neuroticism, 14 with Parkinson’s disease, 4 with reac-
tion time and 3 with Alzheimer’s disease. We observed more overlap 
with previous GWAS results when the significance threshold was 
relaxed to 5 × 10−8 (Supplementary Table 10). We also compared our 
results with those reported in Elliott et al.14, who performed GWAS 
of 3,144 imaging phenotypes (including brain volume phenotypes 
processed by FreeSurfer47) using the UKB phase 1 data (n = 8,428). 
When both were corrected for the number of GWAS analyses per-
formed, 26 of the 78 significant variants reported in Elliott et al.14 
were in LD (r2 ≥ 0.6) with our independent significant variants 
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(Supplementary Table 11). When both were relaxed to the 5 × 10−8 
significance threshold, 124 of their 616 significant variants were in 
LD with our independent significant variants.

Gene-based association analysis and functional mapping. We 
performed gene-based association analysis with GWAS summary 
statistics for 18,796 candidate genes (Methods). We found 281 sig-
nificant gene-level associations (P < 2 × 10−8, adjusted for multiple 
traits) between 157 genes and 55 ROIs (Supplementary Table 12). 
Our results replicated 33 genes discovered in previous studies, 
including FOXO3 in Baranzini et al.46 for normalized brain volume, 
GATAD2B in Hibar et  al.48 for lentiform nucleus volume, GNA12 
in Sprooten et  al.49 for white matter integrity, MCC in Kim and 

Webster50 for brain cytoarchitecture, HMGA2 and HRK in Stein 
et al.44 for brain structure, KANSL1, MAPT, STH and CENPW in 
Ikram et al.24 for intracranial volume, GMNC, WNT3 and PDCD11 
in Klein et al.51 for intracranial volume, SLC44A5 in Furney et al.45 
for whole-brain volume, MSRB3, BCL2L1, DCC and CRHR1 
in Hibar et  al.17 for subcortical brain region volumes, LEMD3, 
WIF1 and ASTN2 in Bis et al.25 for hippocampal volume, MAST4, 
FAM53B, METTL10 and FAF1 in van  der Meer et  al.3 for hippo-
campal subfield volumes, DSCAML1 and KTN1 in Chen et al.43 for 
putamen volume, and ZIC4, VCAN, PAPPA, DRAM1, DAAM1 and 
ALDH1A2 in Elliott et  al.14 for brain imaging measurements. We 
found that 124 genes were novel and had not been linked to ROI 
volumes previously (Supplementary Table 13). Of the 157 detected 
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Fig. 1 | The number of independent significant variant-level associations discovered in uKB GWAS (n = 19,629 subjects) at different significance levels. 
The P values are raw P values of two-sided t-test statistics. The outer layer counts the number of associations for each ROI volume with P < 5 × 10−8, the 
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testing multiple imaging phenotypes with Bonferroni correction. DC, diencephalon.
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genes, 70 have previously been implicated in cognitive functions, 
intelligence, education, neuroticism, and neuropsychiatric and 
neurodegenerative diseases/disorders, such as IGF2BP1 (refs. 29,52), 
WNT3 (refs. 27,28,53,54), PLEKHM54–56 and AGBL2 (refs. 28,54,57,58). In 
particular, 47 of the 70 pleiotropic genes were novel genes of ROI 
volumes, and thus these findings substantially uncovered the gene-
level pleiotropy between ROI volumes and these traits (Fig. 2).

The independent significant variants were also annotated by 
functional consequences on gene functions (Supplementary Table 
14 and Supplementary Fig. 9), and were subsequently mapped to 
genes according to physical position, expression quantitative trait 
loci (eQTL) association (for brain tissues) and three-dimensional 
chromatin (Hi-C) interaction (Methods). Functional gene map-
ping yielded 505 significant associations for 279 genes and 53 ROIs 
(Supplementary Table 15). Of the 279 genes, 163 were not discov-
ered in the above gene-based association analysis, which replicated 
more previous findings on ROI volumes, such as FBXW8 in Stein 
et  al.44 for brain structure, WNT16 in Zheng et  al.59 for cortical 
thickness, TBPL2 in Chen et  al.43 for putamen volume, FAT3 in 
Hibar et al.17 for subcortical brain region volumes, FAM175B, LHPP, 
SLC4A10, RNFT2, TESC, FOXD2, DMRTA2, CDKN2C and DPP4 in 
van der Meer et al.3 for hippocampal subfield volumes, and EPHA3, 
SLC39A8, BANK1, CHPT1, ACADM, FAM3C, L3HYPDH, JKAMP 
and AQP9 in Elliott et  al.14 for brain imaging measurements. We 
found that 53 (41 new) of the 163 genes were associated with cogni-
tive functions, intelligence, education, neuroticism, neuropsychiat-
ric and neurodegenerative disorders, such as NT5C2 (refs. 28,55,60,61), 
ADAM10 (refs. 61,62) and GOSR1 (refs. 27,55) (Supplementary Fig. 10). 
In particular, 182 significant Hi-C interactions were observed in the 
Hi-C functional mapping analysis (Supplementary Table 16), which 
yielded 33 significant associations between 13 genes and 16 ROIs 
(Supplementary Table 17). Of the 13 genes, 5 were not mapped by 
physical position or eQTL association, such as C5orf64 for left peri-
calcarine. C5orf64 has been reported to be associated with cognitive 
functions and intelligence27, education and math ability55, as well as 
risk behaviors63 and Alzheimer’s disease64.

In addition, we explored the biological interpretations of our 
GWAS results by performing several enrichment and annotation 
analyses, including gene property analysis by MAGMA and chro-
matin-based annotation analysis by stratified LDSC65 (Methods). 
To gain more insights into the biological mechanisms, we used 
DEPICT66 and MAGMA to conduct gene set analysis (Methods). 
The results can be found in Supplementary Note and are summa-
rized in Supplementary Tables 18–21. In general, although some 
positive results can be obtained from these analyses, the pres-
ent GWAS still has limited power to infer the specific biologi-
cal pathway(s) influencing brain ROI volumes, and future GWAS 
with a larger sample size is needed to further explore the biological 
mechanisms of brain imaging phenotypes.

Joint analysis with four independent datasets. To validate the 
UKB GWAS results, we repeated GWAS of 101 ROI volumes sepa-
rately on data obtained from four other independent studies: PNC 
(n = 537), HCP (n = 334), PING (n = 461) and ADNI (n = 860). Due 
to the small sample size of these four datasets, the probability of 
replicating significant findings in the UKB was low. Instead, we 
checked whether the effect signs were concordant in the five stud-
ies and whether the P value of the top UKB risk variants decreased 
after meta-analysis (Methods). Smaller P values after meta-analysis 
indicate similar variant effects in independent samples67,68.

We carried out a joint analysis on 3,841,911 genetic variants that 
were present in all five sets of GWAS results. For the 7,310 signifi-
cant associations (at the 4.9 × 10−10 significance level), 63.8% (4,666) 
associations had the same effect signs across the five studies, and 
97.0% (7,090) associations had the same effect signs in at least four 
studies (including UKB). Specifically, the number of genetic variants 
that had the same effect sign as UKB was 6,823 (93.3%) for ADNI, 
6,436 (88.0%) for HCP, 6,455 (88.3%) for PING and 6,648 (91.0%) 
for PNC. An exact binomial test69 showed a significant non-random 
agreement in effect signs across all of the four studies (one-sided 
P < 2.2 × 10−16, null hypothesis: agreement has a probability 0.5).  
Of the top 2,000 significant associations, 93.9% (1,877) had a 
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smaller P value after meta-analysis, and 91.4% (6,678) of the 7,310 
associations were enhanced. We then performed meta-analysis on 
all 8,944,375 UKB GWAS genetic variants (variants were allowed 
to be missing in the four independent datasets). Compared to the 
UKB GWAS results (Supplementary Table 2, Supplementary Fig. 11 
and Supplementary Note), there were more significant associations 
after meta-analysis: 29,585 significant associations at the 5 × 10−8 
significance level and 16,591 at the 4.9 × 10−10 significance level 
(Supplementary Table 22 and Supplementary Fig. 12).

Genetic correlation with other traits. We used the meta-analysis 
GWAS results to estimate the genetic correlation with other traits 
via LDSC. As positive controls, we first estimated the genetic corre-
lation between several UKB ROI volumes (TBV, left/right thalamus 
proper, left/right caudate, left/right putamen, left/right pallidum, 
left/right hippocampus and left/right accumbens area) and their 
corresponding traits studied in the ENIGMA consortium70. The 
genetic correlation estimates were all significant (P < 4.13 × 10−6), 
and the average correlation was 0.95 (Supplementary Table 23). We 
then collected 50 sets of publicly available GWAS summary statis-
tics (Supplementary Table 24) and calculated their pairwise genetic 
correlation with ROI volumes (Supplementary Table 25). We mainly 
focused on traits that showed evidence of pleiotropy in association 
lookups. There were 22 significant associations after adjusting for 

multiple testing by the Benjamini–Hochberg procedure at the 0.05 
level (Supplementary Table 26 and Supplementary Fig. 13).

Significant genetic correlations linked 13 ROI volumes with 
general cognitive functions, education (education years, college 
completion), intelligence, numerical reasoning, reaction time, 
depressive symptoms, neuroticism and bipolar disorder (Fig. 3), 
which matched our findings in variant- and gene-level lookups. In 
particular, TBV had positive correlations with cognitive functions, 
education, intelligence and numerical reasoning (genetic correla-
tion range = (0.20, 0.25), mean = 0.22, P-value range = (1.52 × 10−11, 
3.45 × 10−5)). These results matched the previous finding that brain 
size has small but significant connections with cognitive perfor-
mance71. Reaction time had negative correlations with left/right 
pallidum, left/right ventral diencephalon and white matter (genetic 
correlation range = (−0.20, −0.13), P-value range = (3.80 × 10−7, 
1.14 × 10−4)). The negative correlations between reaction time and 
white matter volumes have previously been reported72,73. Further 
details can be found in the Supplementary Note. When the false 
discover rate level was relaxed to 0.1, suggestive evidence was 
observed for more brain-related traits, such as autism spectrum dis-
order and sleep traits (Supplementary Table 26 and Supplementary 
Fig. 14). In conclusion, our results confirm the significant genetic 
correlation among these traits and quantify the degree of their 
genetic overlaps.
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Predictive ability of the UKB GWAS results. We examined the 
out-of-sample prediction power of the UKB GWAS summary statis-
tics using PRS prediction74. We first used a tenfold cross-validation 
design to examine the prediction power within the UKB sample 
for seven ROIs, including the thalamus proper, caudate, putamen, 
pallidum, hippocampus, accumbens area and TBV (Methods). The 
polygenic profiles can explain 1.18%–3.93% of the phenotypic vari-
ance (P-value range = (7.88 × 10−210, 4.90 × 10−72)) for these ROIs. The 
largest R-squared of 3.93% was observed on putamen. Next, we used 
ROI-derived profiles to carry out cross-trait prediction on brain-
related traits including education, reaction time, numeric memory 
and fluid intelligence. The largest R-squared of a single profile was 
0.24% (P = 7.53 × 10−7), which occurred when using the TBV-derived 
profile to predict fluid intelligence. When putting the profiles of seven 
ROIs together in one multivariate model, the R-squared for predict-
ing fluid intelligence can be improved to 0.52% (P = 1.89 × 10−9). 
These results are summarized in Supplementary Table 27.

We then used the GWAS summary statistics of 19,629 UKB indi-
viduals to construct polygenic profiles on subjects in PNC, HCP, 
PING and ADNI. We found that, for 11 ROIs (Fig. 4), the geneti-
cally predicted regional volume was significantly associated with the 
observed ROI volume in all four validation datasets after Bonferroni 
correction (that is, 101 × 4 = 404 tests), and can account for 1.17%–
6.38% of the phenotypic variance (P-value range = (3.31 × 10−24, 
1.68 × 10−5)) (Supplementary Table 28). For example, the R-squared 
of the right putamen-derived profile was 6.38% in ADNI and 

4.85% in PNC. Furthermore, 29 genetically predicted regional vol-
umes were significant in at least three of the four datasets, 56 in 
at least two datasets, and 84 in at least one dataset (Supplementary  
Figs. 15–17). In summary, our within-UKB and out-of-UKB PRS 
analyses clearly indicate that UKB GWAS summary statistics of ROI 
volumes have widespread prediction power across ROIs. However, 
the R-squared can be low when predicting other brain-related 
complex traits. Such results are unsurprising because the genetic 
correlations among these traits were found to be small (although 
significant) in LDSC analysis.

Discussion
In this study, we presented GWAS of 101 ROI volumes using data 
for 19,629 UKB individuals. Our novel contributions include: iden-
tification of many new genetic associations at the variant, locus and 
gene levels; insights into the genetic co-architecture of brain vol-
ume phenotypes and other brain-related complex traits; validation 
of the UKB results in independent studies; and assessment of the 
predictive power of UKB GWAS results. Significant (P < 4.9 × 10−10) 
associations were found for 58 of the 101 ROIs. With a larger sample 
size, the present study replicated many known genetic variants but 
also prioritized new ones. Compared to Elliott et al.14, our GWAS 
not only discovered more genetic variants, but also enriched the 
degree of (statistical) pleiotropy75 of the associated genes and char-
acterized the shared genetic influences with cognitive and mental 
health traits. Our SNP heritability estimates are aligned with the 
previous results of existing twin studies. For example, our results 
supported previous findings that the degree of genetic control varies 
across different regions within the brain7,12,76,77. We also confirmed 
that cortical ROIs have larger variability in their heritability esti-
mates than subcortical and ventricular ROIs11. In addition, some 
subcortical ROIs, such as putamen, cerebellum white matter and 
brain stem11,78, were confirmatively highly heritable. On the other 
hand, SNP heritability of ROI volumes was found to be generally 
lower than estimates reported in twin studies7–10. This is expected79 
and may indicate that genetic influences cannot be fully captured by 
additive effects of common genetic variants37. Such gaps may inspire 
future work to explore the effects of rare genetic variants on ROI 
volumes and to better model the genetic variation of the brain.

The present GWAS still faces some limitations. First, the current 
GWAS sample size of ROI volumes (and many other brain imaging 
phenotypes) is still far from sufficient. The highly polygenic genetic 
architecture of ROI volumes requires a larger number of individuals 
to identify many weak causal variants. In the era of sharing GWAS 
summary statistics, well-powered GWAS are essential to study 
the genetic co-architecture among complex traits. For example, a 
recent study by Watanabe et al.75 to discover the global overview of 
the genetic co-architecture of 2,965 traits focused only on GWAS 
with a sample size larger than 50,000, with the average sample size 
of selected traits being 256,276. In our genetic correlation analysis, 
we obtained only a limited number of significant correlations, even 
though many pleiotropic genes were found in association lookups. In 
addition, ROI-derived PRS currently may have insufficient power to 
predict other brain-related traits. Therefore, we expect that GWAS 
of ROI volumes with a larger sample size will be available and can 
further improve our understanding of genetic overlaps underlying 
other traits. Besides increasing the sample size, combining genotyp-
ing data with external information, such as gene expression data80, 
may also help elucidate causal mechanisms, improve prediction per-
formance and identify genetic connections among traits.

Second, potential imaging artifacts, such as MRI hardware and 
software changes81, may cause unwanted variation in downstream 
genetic analyses, especially when combining multi-site and multiple-
phase neuroimaging data82–84. In the present GWAS, we confirmed 
that the UKB phase 1 and 2 data have a largely consistent genetic 
basis, and verified that the UKB GWAS results had satisfactory  
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prediction ability on four other independent datasets. However, 
we found that the SNP heritability estimates of the two phases data 
were not perfectly harmonized. The inadequate GWAS sample size 
may partially explain the variation in these heritability estimates, 
but it is also possible that artificial factors impaired the consistency 
of our results (see Table 1 of Smith and Nichols82 for a list of com-
mon imaging batch effects). Future studies that integrate data from 
more sites and phases are expected to be batch effects-aware and to 
confirm the previous GWAS findings.
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and CommonMind Consortium92) and chromatin interaction mapping (built-in 
chromatin interaction data: dorsolateral prefrontal cortex, hippocampus93; annotate 
enhancer/promoter regions: E053-E082 brain94). We used default values for all 
other parameters.

For the detected genes, we performed lookups in the NHGRI-EBI GWAS 
catalog (version 2019-05-03) again to explore the previously reported associations 
with the same or other traits. We focused on traits including cognitive functions 
(such as general cognitive ability, cognitive performance and empathy quotient), 
intelligence, educational attainment, math ability (such as highest math class taken 
and self-reported math ability), reaction time, neuroticism, neurodegenerative 
diseases (such as Alzheimer’s disease and Parkinson’s disease) and neuropsychiatric 
disorders (such as major depressive disorder, schizophrenia and bipolar disorder).

Biological annotation and enrichment analyses. For the 14 brain tissues (GTEx90 
v7), we performed gene property analysis via MAGMA. That is, for each candidate 
gene, we tested whether its tissue-specific expression levels can be linked to the 
strength of its association with ROI volumes. We also performed cell-type/tissue-
specific chromatin-based annotation analysis using stratified LDSC (https://github.
com/bulik/ldsc/wiki/Cell-type-specific-analyses). The cell-type/tissue-specific 
annotations of DNase I hypersensitivity and activating histone marks (H3K27ac, 
H3K4me3, H3K4me1, H3K9ac and H3K36me3) were from the Roadmap 
Epigenomics consortium94 and the ENCODE project95. For each annotation, we 
tested whether it had an enriched contribution to per-SNP heritability, conditional 
on the other annotations. DEPICT (version 1 rel194, https://github.com/perslab/
depict) and MAGMA gene set analyses were used to explore the implicated 
biological pathway by the UKB GWAS summary statistics. Specifically, DEPICT 
tested 10,968 reconstituted gene sets, and the GWAS summary statistics with 
P < 10−5 were used as input. The MAGMA gene set analysis examined 10,678 gene 
sets from the Molecular Signatures Database96 (MSigDB, v6.2, http://software.
broadinstitute.org/gsea/msigdb), including 4,761 curated gene sets and 5,917 Gene 
Ontology terms. All parameters in these analyses were set as default.

Meta-analysis of GWAS results. We meta-analyzed the UKB, PING, PNC, ADNI 
and HCP GWAS summary results using METAL (https://genome.sph.umich.edu/
wiki/METAL) with the sample-size-weighted approach. Since the sample sizes of 
the four other datasets were small, we removed the variants that were not presented 
in the UKB data.

Genetic correlation estimation with LDSC. LD Hub (v1.9.1, http://ldsc.
broadinstitute.org/ldhub/) was used to estimate the genetic correlation between 
several UKB ROI volumes and their corresponding traits studied in the ENIGMA 
consortium (http://enigma.ini.usc.edu/). The LDSC software (v1.0.0, https://
github.com/bulik/ldsc) was then used to estimate the pairwise genetic correlation 
with 50 sets of collected GWAS summary statistics. In addition, for each ROI, we 
also examined the genetic correlation between its regional volumes collected in 
UKB phases 1 and 2. We used the pre-calculated LD scores provided by LDSC 
(https://data.broadinstitute.org/alkesgroup/LDSCORE/), which were computed 
using 1000 Genomes European data. We used HapMap3 (ref. 97) variants and 
removed all variants in the major histocompatibility complex region.

Polygenic scoring. Polygenic profiles were created to examine the out-of-sample 
prediction power of the GWAS results. Specifically, we used PLINK to generate 
risk scores in testing data by summarizing across variants, weighed by their effect 
sizes estimated from training data. To account for the LD structure, two procedures 
were used: LD-based pruning (window size 50, step 5, r2 = 0.2); and posterior effect 
size estimation under continuous shrinkage priors with an external LD reference 
panel98 (https://github.com/getian107/PRScs). We tried five P-value thresholds for 
predictor selection in each of the two procedures: 1, 0.5, 0.05, 5 × 10−4 and 5 × 10−8. 
Thus, ten polygenic profiles were generated for each ROI volume, and we reported 
the best prediction power that can be achieved by a single profile of the ten. The 
association between polygenic profile and phenotype was estimated and tested in 
a linear regression model, adjusting for the effects of age and sex. The additional 
phenotypic variation that can be explained by polygenic profile (that is, the 
incremental R-squared) was used to measure the prediction power.

For the UKB dataset, we randomly divided the 19,629 UKB individuals into ten 
folds, then used nine of these folds as training data to rerun GWAS, and created 
polygenic profiles on the individuals in the remaining fold, which served as testing 
data. We repeated this procedure ten times such that each fold alternated to serve 
as the testing data for exactly one time. We examined seven ROIs including the 
thalamus proper, caudate, putamen, pallidum, hippocampus, accumbens area 
and TBV. For the first six ROIs, their volumes were the sum of the volumes of the 
corresponding left and right ROIs. We then used these ROI-derived profiles to 
predict four brain-related traits: education (Data-Field: 845), reaction time (Data-
Field: 20023), numeric memory (Data-Field: 4282) and fluid intelligence (Data-
Field: 20016). We first assessed the cross-trait prediction ability of each profile, and 
then we selected the best profile for each ROI and put the seven profiles together in 
one model for multivariate analysis.

Next, we used the UKB GWAS results to perform prediction on ADNI, 
PING, PNC and HCP data for all 101 ROI volumes. The prediction accuracy was 

Methods
GWAS participants and phenotypes. We performed GWAS separately on five 
publicly available datasets: the UKB (http://www.ukbiobank.ac.uk/resources/) 
study, the HCP (https://www.humanconnectome.org/) study, the PING (http://
www.chd.ucsd.edu/research/ping-study.html) study, the PNC (https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v1.p1) study and 
the ADNI (http://adni.loni.usc.edu/data-samples/) study. The main GWAS made 
use of data for 19,629 individuals of British ancestry from the UKB study, and 
the four other GWAS were performed on individuals of European ancestry (see 
Supplementary Table 29 for a summary of sample size of each GWAS).

The raw MRI, covariates and genetic data were downloaded from each data 
resource. We processed the MRI data locally using consistent procedures via 
advanced normalization tools (http://stnava.github.io/ANTs/) to generate ROI 
volume phenotypes for each dataset. The processing steps are detailed in the 
Supplementary Note, and we removed three ROIs (X5th ventricle and left/right 
lesion) with missing rates >99%. For each phenotype and continuous covariate 
variable, we further removed values greater than five times the median absolute 
deviation from the median value. All individuals were aged between 3 and 92 years. 
More information about study cohorts can be found in Supplementary Table 30 
and the Supplementary Note.

Heritability estimation and genome-wide association analysis. We estimated the 
proportion of variation explained by all autosomal genetic variants in UKB using 
GCTA-GREML analysis85 (http://cnsgenomics.com/software/gcta/). The adjusted 
covariates included age (at imaging), age-squared, sex, age–sex interaction, 
age-squared–sex interaction, TBV (for ROIs other than TBV itself), and the top 
40 genetic principal components provided by UKB86 (Data-Field 22009). The 
heritability estimates were tested in one-sided likelihood ratio tests. For genetic 
variants of autosomes, we performed association analysis for each ROI volume 
using PLINK87 (https://www.cog-genomics.org/plink2/). The same set of covariates 
as in GCTA-GREML analysis were adjusted. The marginal genetic effects were 
tested in two-sided t-tests. GWAS were also separately performed on PING, PNC, 
ADNI and HCP data. In these four datasets, we adjusted for age, age-squared, 
sex, age–sex interaction, age-squared–sex interaction, TBV (for ROIs other 
than TBV itself), and top ten genetic principal components estimated from the 
genetic variants. We also adjusted for Alzheimer’s disease status in ADNI GWAS. 
To examine the genetic correlation between UKB phase 1 and phase 2 data, we 
performed GWAS separately on data for the two phases. For genetic variants on 
the X chromosome, we performed association analysis using XWAS88 (version 3.0, 
http://keinanlab.cb.bscb.cornell.edu/content/xwas/). We coded male genotypes on 
the X chromosome as 0/2, and sex was considered as a covariant in the model.

Genomic risk loci characterization and comparison with previous findings. 
Genomic risk loci were defined using the FUMA online platform (version 1.3.4, 
http://fuma.ctglab.nl/). We input the UKB GWAS summary statistics obtained 
from PLINK. FUMA first identified independent significant variants, which 
were defined as variants with a P value smaller than the predefined threshold 
and independent of other significant variants at r2 < 0.6. Using these independent 
significant variants, FUMA then constructed LD blocks for independent significant 
variants by tagging all variants that had a minor allele frequency of ≥0.0005 and 
were in LD (r2 ≥ 0.6) with at least one of the independent significant variants. These 
variants included those from the 1000 Genomes reference panel and may not 
have been included in the present study. Based on these independent significant 
variants, (independent) lead variants were also identified as those that were 
independent from each other (r2 < 0.1). If LD blocks of independent significant 
variants were closed (<250 kilobases based on the closest boundary variants of LD 
blocks), they were merged to a single genomic locus. Thus, each genomic locus 
could contain more than one independent significant variant and lead variant. 
Independent significant variants and all of the tagged variants were subsequently 
searched by FUMA in the NHGRI-EBI GWAS catalog (version 2019-01-31,  
https://www.ebi.ac.uk/gwas/) to look for their reported associations (P < 9 × 10−6) 
with any traits.

Gene-based association analysis and functional annotation. Gene-based 
association analysis was carried out for 18,796 protein-coding genes using 
MAGMA (v1.07, https://ctg.cncr.nl/software/magma/), which was also 
implemented in FUMA. Genetic variants were mapped according to their psychical 
positions, and then the gene-based P values were calculated by the GWAS 
summary statistics of mapped variants. Default MAGMA parameters were used, 
which mapped genetic variants to genes with no window around genes (window 
size = 0). In functional annotation and mapping analysis, variant-level signals were 
annotated with their biological functionality and then were linked to genes by a 
combination of positional, eQTL and three-dimensional chromatin interaction 
mappings. Specifically, independent significant variants and all of the tagged 
variants were first annotated for functional consequences on gene functions (for 
example, intergenic, intronic and exonic) using ANNOVAR89 (version 2017-01-
11). Functionally annotated variants were then mapped to 35,808 candidate genes 
based on physical position on the genome (tissue/cell types for 15-core chromatin 
state: brain), eQTL associations (tissue types: GTEx90 v7 brain, BRAINEAC91 

NATure GeNeTIcS | www.nature.com/naturegenetics

https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses
https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses
https://github.com/perslab/depict
https://github.com/perslab/depict
http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
https://genome.sph.umich.edu/wiki/METAL
https://genome.sph.umich.edu/wiki/METAL
http://ldsc.broadinstitute.org/ldhub/
http://ldsc.broadinstitute.org/ldhub/
http://enigma.ini.usc.edu/
https://github.com/bulik/ldsc
https://github.com/bulik/ldsc
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://github.com/getian107/PRScs
http://www.ukbiobank.ac.uk/resources/
https://www.humanconnectome.org/
http://www.chd.ucsd.edu/research/ping-study.html
http://www.chd.ucsd.edu/research/ping-study.html
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v1.p1
http://adni.loni.usc.edu/data-samples/
http://stnava.github.io/ANTs/
http://cnsgenomics.com/software/gcta/
https://www.cog-genomics.org/plink2/
http://keinanlab.cb.bscb.cornell.edu/content/xwas/
http://fuma.ctglab.nl/
https://www.ebi.ac.uk/gwas/
https://ctg.cncr.nl/software/magma/
http://www.nature.com/naturegenetics


AnAlysis Nature GeNetics

Acknowledgements
This research was partially supported by US National Institutes of Health (NIH) grants 
MH086633 (H.Z.) and MH116527 (T.Li), and a grant from the Cancer Prevention 
Research Institute of Texas (H.Z.). We thank the individuals represented in the UKB, 
ADNI, HCP, PING and PNC datasets for their participation and the research teams 
for their work in collecting, processing and disseminating these datasets for analysis. 
This research has been conducted using the UKB resource (application number 22783), 
subject to a data transfer agreement. We gratefully acknowledge all of the studies 
and databases that made GWAS summary data available. Part of data collection and 
sharing for this project was funded by the ADNI (NIH grant U01 AG024904) and 
DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI 
is funded by the National Institute on Aging, the National Institute of Biomedical 
Imaging and Bioengineering and through generous contributions from the following: 
Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; 
BioClinica; Biogen Idec; Bristol-Myers Squibb; Eisai; Elan Pharmaceuticals; Eli Lilly 
and Company; EuroImmun; Roche and its affiliated company Genentech; Fujirebio; GE 
Healthcare; IXICO; Janssen Alzheimer Immunotherapy Research and Development; 
Johnson and Johnson Pharmaceutical Research and Development; Medpace.; Merck 
and Co.; Meso Scale Diagnostics; NeuroRx Research; Neurotrack Technologies; Novartis 
Pharmaceuticals Corporation; Pfizer; Piramal Imaging; Servier; Synarc; and Takeda 
Pharmaceutical. The Canadian Institutes of Health Research is providing funds to 
support ADNI clinical sites in Canada. Private sector contributions are facilitated by 
the Foundation for the NIH (www.fnih.org). The grantee organization is the Northern 
California Institute for Research and Education, and the study is coordinated by the 
Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI 
data are disseminated by the Laboratory for Neuro Imaging at the University of Southern 
California. Part of the data collection and sharing for this project was funded by the 
PING study (US NIH grant RC2DA029475). PING is funded by the National Institute 
on Drug Abuse and the Eunice Kennedy Shriver National Institute of Child Health and 
Human Development. PING data are disseminated by the PING Coordinating Center at 
the Center for Human Development, University of California, San Diego. Support for  
the collection of the PNC datasets was provided by grant RC2MH089983 awarded to  
R. Gur and RC2MH089924 awarded to H. Hakonarson. All PNC subjects were recruited 
through the Center for Applied Genomics at The Children’s Hospital in Philadelphia. 
HCP data were provided by the HCP, WU-Minn Consortium (Principal Investigators: 
D. Van Essen and K. Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes 
and Centers that support the NIH Blueprint for Neuroscience Research; and by the 
McDonnell Center for Systems Neuroscience at Washington University.

Author contributions
B.Z., H.Z. and Y.L. designed the study. B.Z. and T.Luo performed the experiments and 
analyzed the data. T.Li, J.Z., T.Luo, Y.S., X.W., L.Y., F.Z. and Z.Z. downloaded the datasets, 
preprocessed MRI and DNA data, and undertook the quantity controls. B.Z., H.Z. and 
Y.L. wrote the manuscript with feedback from all authors.

competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41588-019-0516-6.

Correspondence and requests for materials should be addressed to H.Z.

Reprints and permissions information is available at www.nature.com/reprints.

evaluated on all samples in the four testing sets (with phenotype and genetic data 
available), not limited to individuals of European ancestry used in GWAS.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data used in this work were obtained from five publicly available datasets: the 
UKB study, the HCP study, the PING study, the PNC study and the ADNI study. 
We used 50 sets of publicly available GWAS summary statistics from several GWAS 
databases. The data resources are summarized in Supplementary Table 24. All UKB 
and meta-analysis GWAS summary statistics of 101 ROI volumes can be found at 
https://github.com/BIG-S2/GWAS.

code availability
We made use of publicly available software and tools. All codes used to generate 
results that are reported in this paper are available upon request.

references
 85. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool  

for genome-wide complex trait analysis. Am. J. Hum. Genet. 88,  
76–82 (2011).

 86. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and 
genomic data. Nature 562, 203–209 (2018).

 87. Purcell, S. et al. PLINK: a tool set for whole-genome association  
and population-based linkage analyses. Am. J. Hum. Genet. 81,  
559–575 (2007).

 88. Gao, F. et al. XWAS: a software toolset for genetic data analysis  
and association studies of the X chromosome. J. Heredity 106,  
666–671 (2015).

 89. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of 
genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, 
e164–e164 (2010).

 90. GTEx Consortium The genotype-tissue expression (GTEx) pilot analysis: 
multitissue gene regulation in humans. Science 348, 648–660 (2015).

 91. Ramasamy, A. et al. Genetic variability in the regulation of gene  
expression in ten regions of the human brain. Nat. Neurosci. 17,  
1418–1428 (2014).

 92. Fromer, M. et al. Gene expression elucidates functional impact of polygenic 
risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

 93. Schmitt, A. D. et al. A compendium of chromatin contact maps  
reveals spatially active regions in the human genome. Cell Rep. 17,  
2042–2059 (2016).

 94. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference 
human epigenomes. Nature 518, 317–330 (2015).

 95. ENCODE Project Consortium An integrated encyclopedia of DNA elements 
in the human genome. Nature 489, 57–74 (2012).

 96. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. 
Bioinformatics 27, 1739–1740 (2011).

 97. International HapMap 3 Consortium Integrating common and rare genetic 
variation in diverse human populations. Nature 467, 52–58 (2010).

 98. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic 
prediction via Bayesian regression and continuous shrinkage priors.  
Nat. Commun. 10, 1776 (2019).

NATure GeNeTIcS | www.nature.com/naturegenetics

http://www.fnih.org
https://doi.org/10.1038/s41588-019-0516-6
https://doi.org/10.1038/s41588-019-0516-6
http://www.nature.com/reprints
https://github.com/BIG-S2/GWAS
http://www.nature.com/naturegenetics


1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Hongtu Zhu

Last updated by author(s): 08/22/2019

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection There is no clear distinction between software/code used for data collection vs data analysis, thus we list all software here: 
 
ANTs v2.1.0 and v2.2.0, http://stnava.github.io/ANTs/;  
PLINK v1.90 beta, https://www.cog-genomics.org/plink2/;  
GCTA v1.91.7beta, http://cnsgenomics.com/software/gcta/; 
METAL v2011-03-25, https://genome.sph.umich.edu/wiki/METAL;  
FUMA v1.3.4, http://fuma.ctglab.nl/;  
MGAMA v1.07, https://ctg.cncr.nl/software/magma; 
LD Score Regression v1.0.0, https://github.com/bulik/ldsc/; 
LD Hub v1.9.1, http://ldsc.broadinstitute.org/ldhub/; 
XWAS v3.0, http://keinanlab.cb.bscb.cornell.edu/content/xwas; 
DEPICT v1 rel194, https://github.com/perslab/depict;  
PRScs v2019-05-15, https://github.com/getian107/PRScs;  
MSigDB v6.2, http://software.broadinstitute.org/gsea/msigdb; 
MaCH-Admix v2.0.203, http://www.unc.edu/~yunmli/MaCH-Admix ; 
NHGRI-EBI GWAS Catalog v2019-01-31, https://www.ebi.ac.uk/gwas/home/; 
The atlas of GWAS Summary Statistics v20190131, http://atlas.ctglab.nl/ (for genetic variants); 
The atlas of GWAS Summary Statistics v20190503, http://atlas.ctglab.nl/ (for genes); 
UK Biobank, http://www.ukbiobank.ac.uk/resources/;  
PING, http://pingstudy.ucsd.edu/resources/genomics-core.html/; 
PNC, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v1.p1/; 
ADNI, http://adni.loni.usc.edu/data-samples/; 
HCP, https://www.humanconnectome.org/.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The data used in this work were obtained from five publicly available datasets: the UK Biobank (UKB) study, the Human Connectome Project (HCP) study, the 
Pediatric Imaging, Neurocognition, and Genetics (PING) study, the Philadelphia Neurodevelopmental Cohort (PNC) study, and the Alzheimer's Disease Neuroimaging 
Initiative (ADNI) study.  This research has been conducted using the UK Biobank resource (application number 22783), subject to a data transfer agreement.  
For UKB, the imputed genetic variants data was released in July 2017, and we used the imaging data of ~22,000 participants released until August 2018.  
The raw MRI, covariates and genetic variants data were available from each data resource: 
UK Biobank, http://www.ukbiobank.ac.uk/resources/;  
PING, http://pingstudy.ucsd.edu/resources/genomics-core.html/; 
PNC, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v1.p1/; 
ADNI, http://adni.loni.usc.edu/data-samples/; 
HCP, https://www.humanconnectome.org/. 
 
We used 50 sets of publicly available GWAS summary statistics from several GWAS databases. The data resources are summarized in Supplementary Table 24.  
 
The full set of UKB and meta-analysis GWAS summary statistics of ROI volumes are available at: https://med.sites.unc.edu/bigs2/data/gwas-summary-statistics/. 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No power calculation was needed in advance. We used all samples passing standard quality controls (please see below).  
The sample size in current analysis was greater than that of most of the previous GWAS on brain volumetric phenotypes. 

Data exclusions The main GWAS made use of data of individuals of British ancestry (self-reported ethnic background, Data-Field 21000) from the UKB study, 
and the other four GWAS (PING, PNC, HCP, ADNI) were performed on individuals of European ancestry.  
 
For the imaging data, we removed three ROIs (X5th ventricle and left/right lesion) with missing rates > 99%. For each phenotype and 
continuous covariate variable, we further removed values greater than five times the median absolute deviation from the median value. 
 
For the genetic variants data, we performed standard quality controls on each dataset, including 1) exclude subjects with more than 10% 
missing genotypes; 2) exclude variants with minor allele frequency less than 0.01; 3) exclude variants with larger than 10% missing genotyping 
rate; 4) exclude variants that failed the Hardy-Weinberg test at 1*10^{-7} level; and 5) remove variants with imputation INFO score less than 
0.8. For X chromosome analysis, the following X-specific quality control steps were performed: 1) variants on chromosomes other than X were 
removed, as well as variants in the pseudoau-tosomal regions (PARs) on X; 2) variants were removed if they had significantly different MAF 
between male and female (p-value <1.76*10^{-7}, Bonferroni-corrected). All the data exclusion criteria were pre-established.  

Replication The significant genetic variants discovered in the UKB sample were supported by a joint analysis with other four independent studies. We 
checked whether the variant effect signs were concordant in the five studies and whether the p-value of top UKB variants decreased after 
meta-analysis. Below are the main results of joint analysis: 
 
The joint analysis was carried out on 3,841,911 genetic variants which were present in all five sets of GWAS results. For the 7,310 significant 
associations, 63.8% (4,666) associations had the same effect signs across the five studies, and 97.0% (7,090) associations had the same effect 
signs in at least four studies (including UKB). 93.9% (1,877) of the top 2,000 significant associations had smaller p-value after meta-analysis, 
and 91.4% (6,678) of all the 7,310 associations were enhanced. 

Randomization All the five datasets are from observational studies, and we used all samples available after data exclusions listed above.  
Therefore, there is no equivalent process of randomization in the present analysis.
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Blinding The data are not from controlled randomized studies, thus there is no step equivalent to blinding involved. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics The main GWAS made use of data of individuals of British ancestry from the UKB study, and the other four GWAS were 
performed on individuals of European ancestry. The UKB genetic data has 8,944,375 genetic variants after genotyping quality 
controls, all individuals were ages between 40 and 80 with mean 62.51, the proportion of male is 0.47. More information about 
other study cohorts can be found in Supplementary Tables 29-30 and Supplementary Note.  

Recruitment Patients were recruited differently in each of the cohorts used, with some cohorts collected from general population and others 
from hospitals. Recruitment details and dataset overviews can be found in Sudlow et al. for UKB (https://doi.org/10.1371/
journal.pmed.1001779), Satterthwaite et al. for PNC (https://doi.org/10.1016/j.neuroimage.2013.07.064), Weiner et al. for ADNI 
(https://doi.org/10.1016/j.jalz.2013.05.1769), and Jernigan et al. for PING (https://doi.org/10.1016/j.neuroimage.2015.04.057). 
The UKB significant variants were supported in the joint analysis and the UKB GWAS results had satisfactory prediction ability on 
four other independent cohorts suggesting that there was limited bias due to sample recruitment.  

Ethics oversight For UKB, the wide consultation, rigorous Ethics and Governance Framework, and Ethics and Governance Council oversight role 
have been essential in paving the way for UK Biobank to accomplish obtaining the multiple ethical and regulatory approvals 
required for participant recruitment, sample and data storage, linkages to routine health care data, enhancement studies, and 
the provision of access to data and samples for approved researchers. Substantial amounts of time, resources, patience, 
tenacity, and evidence of feasibility and/or acceptability from smaller scale pilot studies have also been required to provide 
regulatory bodies with the reassurance that they need of UK Biobank’s rigorous approach and commitment to protecting the 
interests of its participants within an acceptable legal and ethical framework (details can be found in Sudlow et al. https://
doi.org/10.1371/journal.pmed.1001779). More information about these study cohorts can be found in the above references in 
section "Recruitment", the acknowledgment of the main text, and the Supplementary Note. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging
Experimental design

Design type Please see the Online Methods section for full details. This study made use of imaging data from Structural MRI and 
genetic variants data. 

Design specifications Details can be found in Miller et al. (https://doi:10.1038/nn.4393) and Alfaro-Almagro et al. (https://doi.org/10.1016/
j.neuroimage.2017.10.034) for UKB, and Satterthwaite et al. for PNC (https://doi.org/10.1016/
j.neuroimage.2013.07.064), Weiner et al. for ADNI (https://doi.org/10.1016/j.jalz.2013.05.1769), and Jernigan et al. for 
PING (https://doi.org/10.1016/j.neuroimage.2015.04.057). We then processed all the MRI data to generate imaging 
phenotypes using consistent procedures via advanced normalization tools (ANTs). The processing steps by ANTs were 
detailed in Tustison et al. (https://doi.org/10.1016/j.neuroimage.2014.05.044). 

Behavioral performance measures Behavioral performance measures were not used in this study.
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Acquisition

Imaging type(s) Structural MRI.

Field strength 3T in UKB, PNC, PING, and HCP; 1.5 T or 3T for ADNI.  

Sequence & imaging parameters Details can be found in Miller et al. (https://doi:10.1038/nn.4393) and Alfaro-Almagro et al. (https://doi.org/10.1016/
j.neuroimage.2017.10.034) for UKB, and Satterthwaite et al. for PNC (https://doi.org/10.1016/
j.neuroimage.2013.07.064), Weiner et al. for ADNI (https://doi.org/10.1016/j.jalz.2013.05.1769), and Jernigan et al. for 
PING (https://doi.org/10.1016/j.neuroimage.2015.04.057).

Area of acquisition The whole brain scan was used.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Details can be found in Miller et al. (https://doi:10.1038/nn.4393) and Alfaro-Almagro et al. (https://doi.org/10.1016/
j.neuroimage.2017.10.034) for UKB, Satterthwaite et al. for PNC (https://doi.org/10.1016/j.neuroimage.2013.07.064), 
Weiner et al. for ADNI (https://doi.org/10.1016/j.jalz.2013.05.1769), and Jernigan et al. for PING (https://
doi.org/10.1016/j.neuroimage.2015.04.057). The processing steps by ANTs were detailed in Tustison et al. (https://
doi.org/10.1016/j.neuroimage.2014.05.044). 

Normalization Normalization/standardization using the ANTs software were detailed in Tustison et al. (https://doi.org/10.1016/
j.neuroimage.2014.05.044) and Avants et al. (https://doi.org/10.1016/j.neuroimage.2010.09.025). 

Normalization template We use the OASIS-30 Atropos template for registration and Mindboggle-101 atlases for labeling. Details can be found in 
https://mindboggle.info/data.html, Klein and Tourville (https://doi.org/10.3389/fnins.2012.00171) and Tustison et al. 
(https://doi.org/10.1016/j.neuroimage.2014.05.044). The processing steps by ANTs were detailed in Tustison et al. 
(https://doi.org/10.1016/j.neuroimage.2014.05.044). 

Noise and artifact removal Noise and artifact removal from raw data can be found in Miller et al. (https://doi:10.1038/nn.4393) and Alfaro-Almagro 
et al. (https://doi.org/10.1016/j.neuroimage.2017.10.034) for UKB, Satterthwaite et al. for PNC (https://
doi.org/10.1016/j.neuroimage.2013.07.064), Weiner et al. for ADNI (https://doi.org/10.1016/j.jalz.2013.05.1769), and 
Jernigan et al. for PING (https://doi.org/10.1016/j.neuroimage.2015.04.057). Further processing steps such as N4 bias 
correction by ANTs were detailed in Tustison et al. (https://doi.org/10.1016/j.neuroimage.2014.05.044). 

Volume censoring No volume censoring was used in processing structural images.

Statistical modeling & inference

Model type and settings Statistical modeling was not used when generating imaging phenotypes.  But within this study inference was applied at 
the level of the combined imaging-genetics modelling.

Effect(s) tested Statistical modeling was not used when generating imaging phenotypes.  But within this study inference was applied at 
the level of the combined imaging-genetics modelling.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)

We use the OASIS-30 Atropos template for registration and Mindboggle-101 atlases for labeling. Details 
can be found in https://mindboggle.info/data.html, Klein and Tourville (https://doi.org/10.3389/
fnins.2012.00171) and Tustison et al. (https://doi.org/10.1016/j.neuroimage.2014.05.044). The 101 brain 
region parcellation was performed by the Multi-Atlas joint label fusion using ANTs. The processing steps 
by ANTs were detailed in Tustison et al. (https://doi.org/10.1016/j.neuroimage.2014.05.044). 

Statistic type for inference
(See Eklund et al. 2016)

Inference was not carried out when generating imaging phenotypes. But within this study inference was applied at the 
level of the combined imaging-genetics modelling.

Correction Inference was not carried out when generating imaging phenotypes. But within this study inference was applied at the 
level of the combined imaging-genetics modelling.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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